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ABSTRACT

.A~‘l X

This report presents a physical and mathematical theory of radiation directivity
which permits the s‘y‘nthesis of antenna arrays to produce radiation patterns
which may have arbitrarily selected intensities for all directions of radiation.

The method is equally powerful as an analysis tool. \\ .
Part I presents a physical explanation of the theory.

Part II summarizes the formulas which are used (the derivations of the formulas
are presented in Appendices A and B).

Part HI discusses the synthesis problem in detail.

Part IV summarizes the material presented in this report.
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PART I. THE GENERALIZED SPECTRUM THEORY

INTRODUCTION

This report describes and explains the application of a theoretical approach
which relates the radiation-directivity pattern of an array of identical parallel
antennas to the relative amplitudes and phases of the radio-frequency voltages
or currents fed to the component antennas of the array. This theory is also ap-
plicable to sources of radiation wherein the energy is continuously distributed
over the radiating aperture, rather than being concentrated at discrete points.

The theory is applicable to problems of analysis and to problems of synthesis,
and permits a classification of arrays in terms of those characteristics which
are the fundamental limitations of each class of arrays. When only a finite
number of discrete radiators or collectors are available the optimum design is
clearly defined subject to any set of specified conditions.

The theory shows the relations between the illumination of the aperture and the
distribution of radiation through an infinite sphere concentric with the radiating
aperture in free space. The aperture is the region in space occupied by the
radiating elements. In this report the results are presented in terms of field
strength. Power may be calculated by the usual methods if desired. The illu-
mination is the distribution of the amplitudes and phases of the currents or

voltages over the aperture, relative to a common source in transmitting arrays,

and relative to the receiver input terminals in receiving arrays.

The directivity pattern of a receiving array gives the relationship between the
output voltage of the array and the direction of arrival of a plane wave having
a specified field strength and polarization. -
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The theoretical patterns are the same for receiving and transmitting arrays.
The types of patterns which can be obtained with an array are determined by
the shape of the aperture, the number of radiating elements (or the allowable
complexity of the illumination) and the spacing between elements. The par-

ticular pattern for a given aperture is determined by the illumination.

Apertures may be divided into three broad groups.

(1) Line Sources. These include straight line or linear arrays, circular

line arrays and other shaped perimeter arrays. In the theoretical limit a line
source can be synthesized to approximate, :arbitrarily closely, a radiation pat-
tern defined for all azimuths at constant éléi’iation; all elevations at constant
azimuth, or, in general along such directions as can be defined by a curve
drawn on a sphere which is calibrated in azimuth and elevation.

(2) Surface Sources. These include planar and non-planar area arrays;

planar arrays include circular area arrays and rectangular (asparagus patch)
arrays. In the theoretical limit a surface source can be synthesized to approx-
imate, arbitrarily closely, any pattern (subject to certain symmetry restric-

(3) Volume Sources. Arrays enclosed within a volume may be used to ob-
tain any arbitrary pattern over the radiation sphere; this may often be accom-

plished with a smaller maximum aperture dimension than is required for sur-
face arrays; in the case of discrete arrays it permits a large number of an-

tennas to occupy a comparatively small region and yet be spaced far enough
apart from each other so that mutual reactions are small.

'"HE PHYSICAL BASIS FOR DIRECTIVITY

The directivity of an array, like the selectivity of a resonant circuit, is a

phase shift phenomenon. Consider two antennas such as are shown in Figure

la. A plane wave coming from a direction defined by an azimuth angle « ,
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and an elevation angle h, as shown, will induce a voltage in antenna #1 at a
later time than it will induce the same voltage in antenna #2. The radio fre-
quency voltages induced may have their time-varying phases represented in
the usual manner in the eéxponent of ¢’ @€ . The space phase shift is propor -
tional to the geparation, x, between the antennas, and when the separation is
measured in electrical radians the phase shift is equal to the projection of the
spacing distance in the direction of the wave path. Thus, if the voltage induced
in antenna 1 is &° whe + the voltage induced in antenna 2 is

€ 9 L d(t ’1;,)" * xscos h cos a j (1)

The time-variable term is common to all the collectors of an array and will be
omitted hereafter.

When there are a number of antennas spaced within a region the voltages induced
in the antennas may be brought to some common point through transmission paths
of known relative delay and attenuation and then added. The resultant voltage is
found from the sum of these vectors. The directive pattern, or the amplitude and
phase of the resultant voltage as a function of @ and h, depends on how the rel-
ative phases of the several induced voltages vary with @ and h; this is much like
the selectivity of a tuned circuit in which the gain characteristic is determined

by the phase angle between energy stored at the resonant frequency and the en-
ergy supplied at the input frequency. Because of this similarity it is reasonable
that spectrum or Fourier transform analysis, which has proved such a powerful
tool in:circuit theory, should find its application and extension in radiation theory.

However, before exploring the meaning, interpretation and use of the spectra
"related to antenna arrays it is useful to introduce several useful concepts such

| as the geometrical space factor and to consider also how radiation patterns may

be represented or thought of, and to interpret the physical reasons for the limi-

tations of the three classes of arrays described earlier. The concepts developed

here will help lay the groundwork for later considerations.
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THE GEOMETRICAL SPACE FACTOR

It has been customary for some time, when describing an array of identical, par-
allel antennas, each having a directive pattern Fo ( &, h), to write the induted
voltage of the Kth antenna as F‘O (d , h) e"¢" , Where ﬂk represents the
space phase shift. The factor Fo (a , h)is common to all the elements of the
array and may be factored out when the contribution of all the antennas of the ar-
ray are summed. The radiation-directivity pattern of the array is then

F( az,fh)E F‘,‘(aih )‘S(a,k) (2)

(4

The § function is called the geometrical space factor and it is this space factor
which will be dealt with hereafter. The space factor is the radiation-directivity
pattern of an array of hypothetical isotropi¢ radiators.

THE REPRESENTATION OF DIRECTIVE PATTERNS

It is convenient to represent the diréctive patterns of antenna arrays by their
space factors relative to a sphere such as is shown in Figure 2a. Each point
on the surface of the sphere, which is called the radiation sphere, has a direc-

is convenient therefore to use the symbols @ and h. This has a useful phys-

tion from the center specified by the coordinates of azimuth and elevation; it

ical basis not only for receiving arrays such as were described above but also
for transmitting arrays for which the directive patterns are described in terms
of the radiation through a sphere very large with respect to, and concentric with,
the atray, The patterns obtainable for receiving and transmitting antennas have

the same basic physical limitations.






The sphere shown in Figure 2a may have any convenient radius. It is possible
to represent the space factor corresponding to any direction ( @ , h) by erect-
ing an ordinate perpendicular to the surface of the sphere at each point, the
ordinate being proportional to the space factor in the direction defined by that
point. (While relative time delay in various directions, which is represented
by the phase of the radiation in these directions, is not usually of interest,
phases may be represented by a second set of ordinates on the sphere or by
other means.) Alternatively, contours for equal space factor may be drawn on
the surface of the sphere. In some cases, and particularly with plane arrays,
it is convenient to divide the sphere into two hemispheres and to project the
coordinates of each hemisphere on one or more of the planes shown in Figure
2a.

A projection on the horizontal plane which is particularly useful for arrays of
antennas whose centers lie in a horizontal plane is shown in Figure 2b. Figure
2b shows a pattern of the type having a single large pencil lobe and virtually no
side lobes. The amplitude under the surface represents field strength in the
corresponding direction. It will be shown later how arrays may be designed

to produce lobes of this type.

The patterns of space factor for an array of antennas whose centers are in a
vertical plane are conveniently represented in terms of the projection of the
coordinates of the radiation sphere on a vertical plane.

In general, the space factor for any array may be represented in terms of the
projections, on two planes, of the coordinates of the radiation sphere.

I-7
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THE LIMITATIONS OF THE THREE CLASSES OF ARRAYS

A line which represents the loeus of centers of an array of isotropic antennas

18 shown in Figure 3a; and Figure 3b shows a curved line on the radiation sphere
along which a particular desired pattern may be obtained with this class of ar-
ray. If the curve of Figure 3a is divided into N separate segments represent-
factors at N points. In the limit, therefore, an array along a line curve can be
used to determine any arbitrary pattern along a contour defined by a line curve
in the radiation sphere.

A surface which represents the locus of centers of an array of isotropic anten-
nas is shown in Figure 3¢. This surface is divided into N gections. Figure
3d shows how the surface of the entire radiation sphere may be divided into

N sections, the space factor for each section being independent of that in the
other sections. In the limit, therefore,a surface array can produce any desired
pattern in all directions (subject to symmetry restrictions).

Figure 3e shows a volume filled with radiators. The volume may be divided
into N3 increments. Figure 3f shows the surface of the radiation sphere now
divided into a number M2 of independent increments, where M2 = N3. A vol-
ume array can produce any desired pattern, and sometimes a volume array
permits a saving in array space, or in the required number of antennas. An
obvious question at this point is why the volume array is not related to a vol-
ume rather than a surface; this will be answered by the material presented
herein,

I-8
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FOURIER ANALYSIS OF APERTURE ILLUMINATIONS

Some of the physical principles involved in the application of Fourier analysis
and transform theory to antenna arrays can be most easily shown by first con-
sidering arrays of antennas along a straight line; such an array is shown in
Figure 4a. The antennas in Figure 4a are placed along the x axis within the
region (-X,X). While the grouping of antennas is arbitrary these arrays may
often consist of regularly spaced antennas. The region, of length 2X, which
is called the aperture, is slightly larger than the distance between the outer-
most antennas. This allows an equal space for each antenna and simplifies the
mathematical results.

For theoretical purposes it is extremely useful to consider the antennas as con-
tinuously filling up the available region as shown in Figure 4b. This does not
place any limitations upon the theory as it will be shown later how the effects

of discreteness of the antennas may be considered. However, it does produce
a substantial simplification of the theory since the space factor, which consists
of the sum of a number of vectors, can be replaced by an integral in the case of
continuous aperture illumination. This procedure yields solutions in compact,
closed forms and is used for all the other types of arrays considered here as
well,

The aperture illumination is represented by the function

(3)

I-10
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In the case of continuous illumination the space factor is determined by integrat-
ing, rather than adding, the effacts of all the currents along the line of the array,
as is shown in equation 4.

AX
NETIN B ix cos @ cos h ‘ 4)
S(a,h)= 2X J; I(x) ¢’ s h dx )

The types of radiation patterns which are most generally of interest are those
having a pronounced major lobe. It is then convenient to introduce an initial
phase adjustment such that for one direction ( a o ho) all of the vectors add in
phase for real and positive values of I(x). A phase angle of zero in the selected
direction i8 most convenient and therefore equation 4 can be rewritten as shown
in equation 5.

~ X (5)
S(g,h)S ?‘%f I(X’ ijrcuacu h-coesd, cos h”Jx

‘g

The form of equation 5 may be simplified by defining a parameter u such that

: (6)

wE cos @ cos h - cos a, cos b,

The radiation pattern is then found from
X
£ i
Swe X o It % dn ™
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Equation 7 has the same form as the Fourier transforms useéd in ordinary spec-
trum analysis.” I(x) is similar to the time function defining a pulse which ex-
ists entirely within specified limits of time and the parameter u which was in-
troduced above takes the place of (- , ). Equation 7 is the analysis equation;

it obtains the space factor from the aperture illumination. By the reciprocal
properties of Fourier transforms it is immediately possible to write the syn-
theais equation

obtained:

(1) Arrays of identical parallel antennas may be considered as being made
up of a continuous distribution of identical sources.

(2) The radiation-directivity pattern of an array is the product of the di-
rectivity pattern of the individual antennas and the geometrical space factor.
The aperture illumination is defined by a function which defines the relative
amplitudes and phases of the currents or voltages fed to the aperture, The
sum or resiltant of the contributions of all parts of the array are combined

" in the space factor which takes the form of a Fourier integral.

poeyy ey wos SN OGN GBI OB GHD B WD T B GED OB oD GBS e o

* In this report "spectrum' describes the amplitude and phase of the
Fourier Transform, rather than amplitude squared.

I-13
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(3) The directivity pattern of an array is a phase shift phenomenon, much
like the selectivity of a resonant circuit. It is useful at this point to recall
some of the properties of Fourier transforms and the relations between time
pulses and frequency spectra, but to utilize, instead of frequency and time,
the u and x coordinates which we use here. For example, Figure 5a shows
one form which an aperture illumination might take and Figure 5b shows its
spectrum relative to the new coordinate, u. Both the illumination and the
spectrum can have real and imaginary components. However, it may be rec=
ognized that only certain values of u correspond to real values of azimuth and
elevation.

This will be discussed in greater detail later when a broader basis for discus-
sion has been developed.

It was stated earlier that a linear array cannot produce any arbitrary pattern
over the entire surface of the radiation sphere. Therefore, in order to show
clearly the physical significance of the spectrum of the aperture illumination
it will be necessary to consider the simplest type of array which has sufficient
generality such that it can theoretically produce any pattern; this is the plane
area array.

THE TRANSFORM PLANE

A plane array of antennas is an array in which all the antennas are identical
and parallel and the centers all lie in a plane, for example the horizontal
plane. The space factor is obtained by assuming the antennas isotropic. An
array of this type is shown in Figure 1b and if rectangular coordinates are
used to represent distance in the plane then it is convenient to consider the

array as wholly contained within some rectangle, such as the one which is

1-14
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shown. In this case phase shifts are also introduced by the y coordinates of the
positions of particular antennas as compared with an antenna at the origin. For

~example the space phage shift between an antenna at position 3 and an antenna

at position 1 is expressed by
A-¢3‘ +X ;€05 % COS h*y Sin&.Cosh ()

The phase of the voltage vector may be made to be zero for a wave coming from
the direction (X , h ). A new parameter v is defined as shown below:

V'S Sind Cosh = Sina, Cosh, (10)

The aperture illumination must now be represented as a function of both x and
y; hence when the sum of the contributions of all the currents in all the parts of
the array is found by integration the spectrum appears in the following form:

I AY i(wx+vry
S(u.,v):,}lx'f ‘_jx‘ ._IY: I(x,s)fd( ;“')j"’”

(11)

Fourier integral, a two-dimensional pulse, I(x, y) which is transformed into a
two-dimensional spectrum, S(u, v), is shown in Figure 6. This shows the case

Equation 11 is known as a double Fourier integral. As an example of a double

illumination is a function of the two variables u and v and is represented in mag-
nitude by a surface over the (u, v) plane. (Another surface over the (u, v) plane
could be used to represent phase.) The (u, v) plane is called the transform

plane and has considerable physical significance. Any type of aperture illumi-
nation results in a particular type of pattern in the transform plane.

I-16






The space factor at any point on the surface of the radiation sphere can be eval-
uvated if we now find the relation between points in the transform plane and the
corresponding points on the radiation sphere. This relation will, of course,
depend on whether the plane of the array is horizontal, vertical or oblique.

For a horizontal plane array the equations of the parameters u and v show that
radiation spaee— as defined by the p'omts on a hém-isphéf’e-, :maps into a circle

to be identical with that previously shown in Figure 2a. Because the direction
of zero azimuth was taken as parallel to the x axis in the plane of the array it
appears in the transform plane parallel to the u axis. The circle has a unit
radius. The distance from the center of the circle to the origin is cos ho‘

The origin corresponds to the direction ( & o ho_). This leads to a signifi-
plane is completely de-
termined by the aperture illumination I(x, y). The location of the points in the

cant physical conclusion. The

pattern in the transform

transform plane which correspond to real values of azimuth and ele”'

With the definitions of the parameters given earlier in equations 6 and 9 the

circle corresponding to radiation space (or the radiation circle) can occupy
any position in the transform plane such as to include the origin within or on
its circumference. In a more general case the radiation circle can appear
anywhere in the transform plane. This is useful for line-source arrays.

The positions of the radiation circle for crossfire, endfire, and broadside
arrays are shown in Figures 7a, b and c.
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Examples of patterns obtained in analysis or synthesis problems of plane arrays
will be shown later in order to clarify and extend the concepts thus far developed.
However, before showing these examples it is useful and informative to inquire
further into the reason why the radiation hemisphéere maps onto the transform
plane in the particular way that it does. In order to do this it is convenient to

consider the radiation pattern of the most general type of array, in which the
antennas are distributed throughout a volume.

TRANSFORM SPACE

Two antennas of a volume array are shown in Figure 1¢. In this case the rela-
tive space phase shift of antenna #4 with respect to antenna #1, including the
phase adjustment which brings all the vectors in phase for one direction is in-
cluded in

- J (ux+‘V3 + wa)

(12)

where

W =Simh=Sin ho

(13)

In this case the spectrum must be represented by a volume, or three dimen-

sional space, called transform space. The locus of points corresponding to the
unit sphere, called the radiation sphere, and which is shown in Figure 8. The
sphere may be r ade identica.l with the sphere shown in Figure 2. The direction
from the center of the sphere to the origin is'(a , h ) and the origin is a point
on the surface of the sphere. For some applications,» it is desirable to have the

various azimuth and elevation directions may be mapped onto the surface of a

1-20
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origin outside the radiation sphere. In this case, parameters Yu , v and
X¥u are added to u, v, and w respectively. The radiation sphere, as a function
of u and v, may be completely defined by its orthographic projections. In the
case of a plane array, which is represented in actual space by only two dimen-
sions, the patterns will be a function of only two of the three transform coor-
dinates.

Every point in transform space has associated with it an intensity, specified by
the space factor, 8, which is a function of the three variables u; v and w.

This is like an electric field for which the intensity is specified at every point.
The dimensions of S are complex field intensity, defined by an amplitude and a
phase.

The amplitude and phase associated with those points in transform space which
coincide with the surface of the radiation sphere define the radiation for the cor-
responding values of azimuth and elevation. This is the reason why this method
of representation was chosen earlier.

SPECTRA OBTAINABLE FROM RECTANGULAR PLANE ARRAYS

It is intended that the mathematical treatment of the radiation theory herein pre-
sented shall be left for later parts of this report. However, it is useful at this
time to make use of one of the relationships which will be developed later in
order to justify and explain some of the physical examples and sketches which
will be shown here to indicate the physical limitations upon the spectra of aper-
ture illuminations and the patterns which may be obtained in radiation space.

For example, it is convenient to describe a typical aperture illumination.



An illustrative continuous aperture illumination for an array contained within a
réctang*le of area 4)& was shown in Fisgur‘e 6. ‘The illumination is conveniently
two dimensional function. It is u\seful to write the double Fourier series in ex-
ponential form as shown below because when this form is substituted into equa-
tion 11 and integrated ar ticularly useful form is obtained.

Loy=¢ . Z e € Y n
For simplicity, consider a single harmonic term of the series such as
e (K riemrl
Ivm € ( .K Y ) |
(15)

When this is substituted into equation 11 it is found that

| - cin(uX + K1)
S KM (u iv) = IKM‘ “'V(uX'i" K

The spectrum, or space factor shown in equation 16 has a familiar form when
either u or v is constant, since in that case it varies as the well known !$_|£_9£_
curve. For example if (M'Y-l- Mﬂ) is zero, then S,

as shown in Figure 9a. This function goes to zero at intervals of u spaced by =
except that SKM(u) has the amplitude IKM at the point where the numerator and"*
denominator of SKM(u) both go to zero. ' This occurs when uX + Kr = 0. A

(u) may be represented

geries of such curves with different values of K would be spaced so that the zero
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points coincide and therefore a series of three terms such as shown in Figure
9b 18 completely specified by the amplitudes I1 o’ i 0’ and I 1o The points

where the zeros can occur are called the independent,j_ints _A function which

In the two dimensional case where S (u, V) is given by equation 16, the spectrum

may be represented by a 3-dimensional sketch such as was shown in Figure 6,
or, alternatively and more simply, by the locations and amplitudes of the in-
dependent points as indicated in Figure 10.

It ean bé seen that for any aperture illumination which can be expressed as a
Fourier series having only a small number of low order harmonics the IICM
coefficients will be different from zero only at those independent points which
are near the origin.

THE SYNTHESIS METHOD

The synthesis method consists of building up the desired pattern out of a set of
standard building blocks or eigenfu‘nctirons‘ These eigenfunctions result from

is expressed asa suitable Fourier series. Part 11 oﬁ tlxis re._port gives the de-
tails of suitable eigenfunction expansions for several classes of arrays.

ular plane array for which the

As an example of synthesis consider ‘a rectan

" form shown above. Suppose it is desired to de-

I;,t _is use,fu,l in this case t;o use a particular set gi the t_ransiorm pulses known

as the cosine squared type. Cosine squared pulses have been used to produce
a flat field on a televisjon ecreen. This subject is discussed by A. V. Loughren

I-25
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and H.A. Wheeler in "The Fine Structure of Television Images, " Proceedings
of I.R.E., May 1938. * A cosine squared pulse is indicated in Figure 5a; it
has a Fourier transform which is very close to being a cosine squared pulse
also. This is shown in Figure 5b. The transform of the cosine squared pulse
can be defined by the set of coefficients.

I o<1 L, =1, =3 (17)

Figure 9 was drawn in these proportions. In the two dimensional case a conven-
fently shaped surface may be built up by using the set of coetficients shown in
Figure 11a. The space factor thus produced has virtually no side lobes (the
first side lobe being 32 db down). The space factor which is thus obtained was
indicated earlier in Figure 6b. The space factor ford, 0 ° 0 and ho =0
was sketched in Figure 2b. The required aperture illumination has the follow-
ing form, other than the initial phase adjustment of a o and ho to direct the
major lobe in the desired direction.

1(x, y) = 4 cos® (l'xl) (18)

and was sketched in Figure 6a. This is one of the simpler examples of the use
of a shaped aperture illumination to obtain a speciﬁg!!rleﬁtivity pattern.

If the aperture had been uniformly illuminated then I(x,y)=1  , and S(u, v) =
’ -

,8,0 o’ and the pattern would have been that of equation 16 with K and M set equal
b ’ o

to zero. The side lobes for uniform illumination are much larger than for cosine-
squared illumination, particularly intheu = oand v = o directions. In these

cases the maxima are the same as in Figure 9.

* Hazeltine Electronics Corporation Report #1771 BW.,

1-27
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The synthesis problem in the simplest case is approached by building up the de-
sired pattern from the basic bullding blocks and then finding the necessary aper-=

 ture illumination, The design of arrays which make economical use of the avail=

able space and which utilize only a small number of radiating elements in the ar=
ray requires the careful consideration of several factors which are discussed in
detail in Section II of this report. These factors are:

(1) The type of radiating element and the orientation of the radiating elements
with respect to the array which results in the most useful function Fo (a, h).

(2) The combinations of eigenfunctions which reproduce the desired pattern to
a satisfactory approximation consistent with an acceptable compromise between
size of aperture and density of antennas.

(3) The modification of the pattern of a continuous illumination by discrete an-

An array of discrete antennas may be analyzed or synthesized by considering
such an array as a continuously illuminated aperture having an illumination which
is the product of two parts. One part I (x) is similar to the illumination already
considered. For example, see Figure 12a for a line-source array. The other
part P(x) is defined as zero except at the points occupied by the antennas. See
Figure 12b. The total illumination, I(x), is the product of the two as shown be-

low:
I1(x) = Io(ix) P(x) (19)

See Figure 12c.

The spectrum corresponding to a continuously illuminated aperture such as shown

in Figure 12a is shown in Figure 13a in which a typical s’:_ Q"zz' term is sketched
as well as the resultant of all such terms, and in which the harmonic amplitudes
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are indicated. The reason the lK coefficients in the S(u) function are called
the harmonic amplitudes is made clearer by consideration of Figure 13b which
shows the spectrum which would be obtained if the continuous aperture illumi=
nation of length 2X which is shown in Figure 12a were repeated infinitely at in-
tervals of 2X. This is the spectrum of a repeating pulse sequence and each
vertical iine in Figure 13b represents one harmoni¢ component. The effect of
the finite aperture is to modify Figure 13b to Figure 13a, which is a continuous
spectrum, but still may be regarded as being made up of the harmonic compo-
nents. ‘

The effect of approximating the continuous finite aperture of Figure 12a with

the discontinuous finite aperture of Figure 12c is to modify the spectral pulse

of Figure 13a to the sequences of spectral pulses of Figure 14. The pulses in
Figure 14 are separated from each other by a number of independent points, or
harmonics, equal to the number of antennas in the particular P(x) function. This
is a result of the multiplication of the two harmonic series.

These results are of a familiar form. Since the aperture illumination is like ’a
time-pulse which is sampled at a high rate (such as for example, in a super-
regenerative sampling process), the result is that the spectrum of the sampled
pulse consists of a set of modulated carriers. Each carrier is a harmonic of
the sampling pulse rate and each carrier when modulated is replaced by a har-
monic sequence identical in form with the spectrum of the unsampled pulse but
with the spectral groups centered on the carriers as is indicated in Figure 14.

The highest unambiguous modulation rate is one-half the sampling rate.

It may be noted in Figure 14 that a different picture is drawn depending on

whether an odd number or an even number of antennas defined the sampling

rate. This is because the side lobes of the Si:xv function alternate in phase,




The inversion shown in Figure 14 indicates that the phase of the modification
of the original pattern which results from the fact that a discrete number of
antennas is used instead of a continuous illumination always has the same
phase regardless of the number of antennas in the line, although the amplitude
of the correction term at any point tends to decrease as the number of antennas
increases.

In the case of a rectangular plane area array the pattern shown in Figure 1la,
in which only nine spectral components appear for a continuous illumination,
must be modified to the pattern shown in Figure 11b in which the nine-sequence
is repeated over the entire plane in a rectangular lattice in which the spacing in
the u direction is equal to the number of antenna rows along the x axis and the
spacing in the v direction is equal to the number of antenna rows along the y
axis.

Figure 11 since it is merely necessary to insure that the extra lobes which re-
sult from the discreteness of the antennas do not undesirably alter the pattern
or space factor in that portion of the transform plane which corresponds to radi-
ation space.

This problem will be discussed more fully in Section IlI of this report. However,
in order to round out the general picture of the theory herein presented an ex-
ample will be given next of an analysis problem to which the theory was applied.

ANALYSIS OF A CIRCULAR LINE ARRAY OF DISCRETE ANTENNAS

There are a large number of forms in which the formula for the pattern of an

array may be written. Some of these involve a reasonably small number of
simple terms. Others may have sequences of infinite series which must be

[ ]
i
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€9



added to give the same results as the closed form solutions. For each general
shape of aperture there is a particular set of coordinates, suited to the geome=
try of the aperture, which is most convenient for representing both the aperture
illumination functions and the spectra. In the case ¢f arrays of circular shape,
one example of which is the array of antennas on the perimeter of a circleina
horizontal plane considered here, it is convenient to use polar coordinates such
as are shown in Figure 15a to represent the geometry of the antenna array. The
angle B is used to represent angular position of an antenna from the x axis, as
shown, and the radius r represents the distance from the origin to the particular
antenna. The phase of the-voltage induced in any antenna on a circle, compared
to that which would be induced in an antenna at the center is A # =2+ c06(B-6)
Two new parameters, o and g appear here. This form could be obtained directly
from the earlier form for rectangular coordinates by a standard transformation
of the variables; ,° and @ may be defined in terms of u and v.

In this case it is found that the transform plane is most conveniently described

in terms of the polar coordinates shown in Figure 15b in which @ represents the
angle made with the u axis by a vector from the point o = 0 to any arbitrary
point, The radial distance is o . The actual spectrum is independent of the

set of coordinates used.

As is the case with most problems in electromagnetic theory which involve cir -
cular geometry the solutions are most conveniently obtained in closed form in
terms of Bessel functions of the first kind. The general formulas for circular

arrays are presented in Part II of this report. The Bessel functions of the

first kind are all very much alike, as can be seen from Figure 16.

I-34
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The eigenfunctions which appear in the case of the circular array are combin-
ations of Bessel functions of the first kind of aygument AR , and trigononom-
etrical functions of . For example, an array of ten antennas spaced 1/2 wave

length apart around a circle and having equal currents for all the antennas

would have its spectrum expressed by the equation

s (fne) s Jé (ﬂR) -2 4,0(/’&) cos 106

(20)
+ terms in Jm(ﬂ R) and othér higher terms, all of which can be neglected.

The first term in this expression represents the pattern obtainable for a con-
tinuously illuminated aperture; this pattern is sketched in Figure 17 which indi-
cates by an isometric drawing the spectrum corresponding to each point of the
transform plane in the vicinity of the origin. The second term in the expression
for S(p,0) shown above is the only factor introduced by the fact that the
array consists of ten antennas. This factor is shown for small values of PR ,
by the isometric drawing of Figure 18. Since both are real functions, the total
amplitude is the sum, with due regard to sign, of the amplitudes shown in Figure
17 and Figure 18. The correction term is zero to several decimal places for a
distance from the origin which increases with the density of antennas 4;6'n the per-

imeter of the circle. For example, it may be seen from Figure 16 that the am-
plitude of any Bessel function is negligible until the argument is as large as a
few fntegerg less than the order, as indicated by the values of Jk(li)- _The sig-

nificance of this fact will be explained in greater detail in a later section of this
report in which the mathematics of circular arrays will be discussed. However,
it can be seen here that the effect of discreteness in circular arrays is similar

to that already found in rectangular arrays.



—

b

21914

T

5

-



81914




The procedure used in analyzing or finding the pattern of a circular array con-
sists of drawing on a suitable set of coordinates, (#,8), lines corresponding
to maxima, minima and zeros of S in the transform plane. Along any radial
line é is a constant and the spectrum is a function ¢! a single variable, o
Along any circular line concentric with the origin of the transform plane 2 is

on the intensity contour curves for various portions of the transform plane can
thus be obtained by simple graphical means using simple functions of a single
variable. This would not be possible if it were attempted to find the patterns
as a function of azimuth and elevation directly.

When the pattern lines have been plotted in the transform plane they may be
traced on to a piece of special graph paper which represents radiation space.
Figure 19 is a sample of the graph paper used. With circular arrays& ,

is generally taken as zero and a choice of h, is made before tracing the pattern
from the transform plane. Figure 20 shows a typical pattern for a circular ar-
ray for which & _ = 0% andh, = 30°. The pattern is indicated by lines of
extreme or zero values of | S| .

Study of the graph paper shows that certain ranges of elevation are compressed;
for example, it is not possible to read conveniently to within 1° of elevation in

the range 0 to 10° of elevation. However, it will be noted that the pattern lines
are approximately uniformly spaced on this paper. This is because the pattern
in the transform plane is limited in the rapidity with which it can change with dis-
tance along the plane and the intensity can be read to the same accuracy for all

values of azimuth and elevation.
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The performance of the antenna array as a function of frequency is found by
using the computed pattern with graph papers in which the raddi of the circles
are % cos h, This follows from the general property of the patterns in trans-
form space; the ratio of the radiation sphere to any reference dimension of the
spectrum (for a fixed illumination over the aperture) is proportional to the fre-
quency. ‘The position of the center of the radiation circle is a function of fre-
quency that depends on the particular phasing networks which are used. The
center of the circle may follow any path (as a function of frequency) which is
consistent with physically realizable phase-shift networks.
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PART I
SUMMARY OF FORMULAS

INTRODUCTION

This section of the report summarizes the formulas which are used in the ana-
lysis and synthesis of the three broad classes of arrays. These are
(1) Perimeter arrays. In this class are
(a) Linear arrays, or straight line arrays. (Figure 21)
(b) Circular line arrays. (Figure 22)
(c) Rectangular line arrays. (Figure 23)
(2) Area or surface arrays. In this class are
(a) Plane rectangular arrays. (Figure 24)
(b) Plane circular area arrays. (Figure 25)
(c) Annular area arrays. (Figure 26)
(d) Cubical surface arrays. (Figure 27)
(e) Cylindrical surface arrays. (Figure 28)
Types (a) and (b) are basic and are possibly the most important of all. The
formulas used in (c) are a special case of those used in (b). (d) and (e) are de-
rived from lc and lb by extension.
(3) Volume arrays. In this class are
(a) Cubical volume arrays. (Figure 29)
(b) Cylindrical volume arrays. (Figure 30)

The formulas presented here provide a direct relationship between the illumin-

ation of the aperture and the space factor of the array. These formulas represent

the aperture illumination in terms of a suitable Fourier series. Thus each com-
ponent of the illumination is related to a particular component of the pattern in
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transform space and the complete pattern is built up of the component building
blocks. In all cases it is assumed that the voltages induced in all the anténnas
of the array are brought to some common point such as the origin by transmis-
sion lines of identical delay time and then added with suitable modifications of
amplitude and phase which are defined by the aperture illumination and the initial
phase adjustment. Reciprocal arrangements are made for transmitting arrays.
An aperture illumination of unity is defined for the case where all of the voltages
are added in phase and with equal amplitude for a s
plane wave, specifiedby < = & andh=h,.

ngle direction of travel of a

The patterns are described in terms of the spectrum parameters, u, v, and w
orp, 6 and w. The spectruni parameters are trigonometrical and hence repeti-
tive functions of azimuth and elevation.

THE GENERAL FORM OF EQUATION

The formulas which are presented here are all based on a set of basic relation=
ships which are presented below. The phase and amplitude corresponding to any
particular antenna compared to an antenna at the origin is expressible in these

forms:

I=L(nyg) €473

where
U=COS<Cosh= €oS %o COS ho
V=81nxCosh=S8in%, COS ho
W=281nh = Sinho

T=T(rnp3) € s(rp cos(g-6)+ w3)

or

where

P C0S(8-6) = Cos(x-@) €os h - Cosl, 1F) cosh,



From figure 15 it can be seen that

X =T ¢os 2 u=pcosd
sin & v =/o sin @

y:.'

g ]

The general form is obtained by summing or, therefore, in the limit by inte-
grating these terms in I over the entire region which contains the antennas. R
is convenient to normalize the results by dividing the integral by a number equal
to the extent of the region. This extent is a length or an area or a volume in any
particular case. The general form of equation is therefore

St f I (region) €Y # (region) (extent)
| extent </ region - € J

This formula takes the forms shown in Table I for the basic types of arrays.

The first column lists the types of array. The second column lists the basic
formulas derived from the general form. The third column shows, for those
types for which the results are useful, the inverse transforms by means of which
I may be found from 8, by direct applica

tion of Fourier's Integrat Theorem.

Two questions might be raised from consideration of Table I. These concern
(1) ‘The limitations upon the spectrum which will insure that the required
aperture illumination will not differ from zero in the region outside the
desired aperture and
(2) The inverse transforms for circular arrays.
These are answered below.

FOURIER EXPANSIONS OF THE ILLUMINATION AND OF THE SPECTRUM. .

The basis for both the analysis and synthesis methods which are described in
this report is the expansion of the aperture illumination into a suitable Fourier
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From figure 15 it can be seen that

X =r cosg u=p cosd
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The general form is obtained by summing or, therefore, in the limit by inte-
grating these terms in I over the entire region which contains the antennas. It
is convenient to normalize the results by dividing the integral by a number equal
to the extent of the region. This extent i8 a length or an area or a volume in any
particular case. The general form of equation is therefore

Q - _‘1___“.,_“ ’ [ «' J V (region) . b asad
S- e ‘f; ogion I (region) € g o (extent)

This formula takes the forms shown in Table I for the basic types of arrays.
The first column lists the types of array. The second column lists the basic
formulas derived from the general form. The third ¢olumn shows, for those
types for which the results are useful, the inverse transforms by means of which
I may be found from S, by direct applic

ion of Fourier's Integrat Theorem.

Two questions might be raised from consideration of Table I. These concern
(1) The limitations upon the spectrum which will insure that the required
aperture illumination will not differ from zero in the region outside the
desired aperture and
(2) The inverse transforms for circular arrays.

These are answered below.

FOURIER EXPANSIONS OF THE ILLUMINATION OF THE SPECTRUM. .

The basis for both the analysis and synthesis methods which are described in

this report is the expansion of the aperture {llumination into a suitable Fourier |




series and the determination by means of the equations given in Table I of a
suitable expansion of the spectrum in terms of a particular Fourier eigen=
function expansion. These eigenfunctions explicitly contain the dimensions of
the aperture. Any spectrum built up out of any combination of any sipgle set
ctions can be realized by an array contained wholly within the aper-
ction of the spectrum, and the

of eigenfu

ture, the size of which appears in the eigenfun
form of Which is determined by the form of the eigenfunction.

Tables U, I and IV show typical terms in the illumination of the several types
of array considered here and the corresponding terms in the spectrum which
are obtained by substituting the illumination function into the particular basic
formula of Table I which is applicable to the type of array considered. The
derivation of these formulas is discussed in Appendix I. The derivation of

the formulas used for arrays of discrete antennas is given in Appendix II.
MATHEMATICS OF CIRCULAR ARRAYS.

In order to perform the integration in the circular case it is necessary to use

€ jpr cos(2-0)

= Jo (f&) +2 ?‘.. (i Jf (pr) COSf\(gee)

Thus, for example, for a circular line array, Bessel functions are introduced.

In order to evaluate the circular area array, a double integration, with respect

to both r and/3 1s necessary. This may be done by integrating first with respect

to£, and then integrating the Bessel function forms in pR. There are only a
few known indefinite integrals of Bessel functions; these were used to get the

forms which are shown in Table Il. Case 2 is a completely general form, in
that any illumination can theoretically be expanded in a series known as a l_)ini

Series, which is a form of Fourier-Bessel Series as follows:;



In this form R is the largest radius of the aperture, the XR M are the roots of
an auxiliary equation, amd(?K ('g) is an added term which is sometimes needed
for this type of series, This form of expansion permits a solution for the spec-
trum in a form such as is shown in Table III, case 2. Alternative forms for
case 2 of Table I and the derivation are given in the Appendix A.

INVERSE TRANSFORMS,

Fourier's Integral Theorem, which defines a pair of reciprocal transforms is
most commonly known in the Campell-Foster form.

s &0 Y .
G() f - r ¢ 0279,

When F(f), and G(g) are real, this defines the relationship between two functions
which can be represented by curves above an axis such as were shown in Figure 5.
In general one or both functions may be complex, and a plane called the p=plane,
where p = j2 vf, is used; complex frequencies have been found a useful aid to
computation.

In the multidimen‘siOnal case the concept of complex frequencies is more -
complicated; however, with respect to each successive integration the tooks of

contour integration may be applied in mathematical extensions of the theory.

The inverse ""rectangular" tran always involve the\sa,me number of

dimensions on both sides of the equations. This is not true, however, of the
circular transforms. For example, a ci:cula,r area array has the transform
pair

f f 1(np) €77 ¥ s
, ™ e -Jp ';Ow('!
A S s TR,
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on the desued radius when the function S (9, O) has the constraints indicated by the
form of Table II, case 2. For this reason the inverse transform for this type was
omitted from Table L

The circular area caseé takes a #pecial form when the formulas are written as
follows:

I(rg) =i Ik (,;)éJKA

Ks =60

K==0o0

| Tp () =f d. (/o)[p]K (or) ]d?
’Q/{((’) =/° :;[K‘(r)[_rlk(pr) ]dr

These are the Bessel Transforms and are similar to the Fourier transforms;

where

the Bessel Transforms are completely symmetrical and have a kernel of the
form tJ kdt) instead of 6 tjwt as in the case of Fourier Transforms; the
range of ihtegration for the Bessel tra.nsferm is from zero to infinity since it

represents radial integration in a plane, and all radii are taken as positive.
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PART III
SYNTHESIS OF ARRAYS

INTRODUCTION

This section of the report presents details of how arrays may be synthesized by
the eigenfunction method and discusses some of the problems which are involved
when the synthesis method is applied. A numerical example of the synthesis of a
rectangular array is given.

In conclusion, the properties of circular arrays are considered in detail although
numerical examples for circular arrays are beyond the scope of this report.

The problems involved in the synthesis of an array become apparent when the
steps in the synthesis method are considered in detail. These are as follows:

(1) The design is undertaken to obtain a particular form of radiation pattern.
This is defined in terms of the description of the required size and shape of the
major lobe and allowable size and shape of the minor lobes. Often there are
other limitations which may restrict the size, shape and complexity of the array.
The first step is to clearly define what is desired.

(2) A type of array (such as for example a plane rectangular array or a vertical
cylinder array or some other type of array) must be chosen tentatively and the de-

sign carried out with this type of array to find what degree of complication, what
size array, and how many elements are required in the array in order to meet
the specified conditions. Since there are several types of arrays adequately gen-
eral in physical characteristics to produce any arbitrary pattern, there may ul-
timately be a choice among several designs on the basis of economy, simplicity

and practicality for the particular application.



(3) A tentative choice must be made of the basic elements of the array taking
account of any ground plane or other reflecting surface which can modify the op-
eration of the array in actual use. The design of the array therefore should in-
clude the effect of ground planes. Under certain conditions the orientation of
the elements in the array with respect to the array gives a useful additional
variable which can be controlled to help obtain the desired overall result econom-
feally.

(4) At this point the required space factor may be defined and the space factor
can be synthesized from the eigenfunctions for the particular type of array being

considered. Thus the coefficients in the generalized Fourier representation of
the aperture illumination may be determined.

(6) The next step is to find the minimum number of antennas which will elim-
inate spurious back lobes. At this point it is sometimes desirable to reconsider
whether it may be possible to reduce the necessary number of antennas by modi-

merely desired to find any method which gives the desired results or if there
are specific reasons why a particular form of array must be used the design is
completed with the préceding step.

The overall radiation pattern of an array is the pxoduc;f of the space factor of

the array and the radiation pattern of the elements. Figure 31 shows plane

dipole arrays with three different orientations of the dipoles with respect to the
planes of the arrays. In each case there is shown also how the pattern of a single
dipole may be represented in the radiation circle of the transform plane. The
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circle has coordinates here of the type shown earlier for horizontal plane arrays.
For each azimuth and elevation there is indicated a relative radiation intensity
from the dipole. The resulting surface defines a function of azimuth and eleva-
tion which multiplies the space factor at points in the transform plane Which
correspond to points of radiation space. This is the F_ function which was men-
tioned in Part L

The concept of the space factor may be readily extended to what may be called

“arrays of arrays,” for which the overall pattern is the product of the pattern

per element, the space factor per basic array group and the space factor for the
set of groups. The procedure of developing an array into an array of arrays has
been called convolution, and an alternative approach which gives these results is
to apply the familiar convolution or folding integral of Fourier integral analysis.
and R. M. Foster, pairs #202 and #203. The convolution process can be used in
either direction. For example, the results obtained for arrays of discrete an-=

tennas give, for the product of the illuminations, the convolution of the patterns.

PULSE SEQUENCES

There are many types of pulse shapes which can be built from the ii;f type of

eigenfunction. One simple and useful group of these is shown in Eigi»ire 32. This
group is called the flat-field sequence and is one group which gives very small

side lobes. With some slight modifications of these, the first side lobe can easily

would make such close design futile.
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cosine and cosine-squared types of illumination. Use of the illumination speci-

Another very useful type is shown in Figure 33b. Figure 33 compares the

fied for Figure 33b instead of that specified for Figure 33c in an array of the type
having a single major lobe permits a saving of 36% in the number of antennas re=
quired for the same 3 db and 6 db beamwidths.

Patterns which are built up of eigenfunctions for which the independent points
are all within the radiation circle generally permit the exchange of beamwidth
for side-lobe level. However, some patterns which use independent points out-
side the region of the transform plane corresponding to the radiation circle can
exchange number of harmonics (or of antennas) for either or both of the above.
The resulting patterns are called superdirective. A basic superdirective type
of pattern for the linear array is shown in Figure 34, along with the required
illumination for it. The same principles are applicable to the other types of
arrays.

Two examples will be given: the first a qualitative example to outline in detail
what the steps are in the synthesis process; and the second a numerical example.

Qualitative Example, Vertical Wedge Beam:

Suppose it were desired to synthesize an array subject to the following limita-
tions: only vertical antennas above a ground plane may be used; the side lobes
shall be as small as is reasonably possible; and at every elevation the main lobe

shall correspond to the same value of azimuth as for every other elevation. The

design is based on a dipole array of the type shown in Figure 31a. The steps in
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the design procedure are indicated in Figure 35 as follows: The space factor of
the array is first sketched on a design chart such as is shown in Figure 35a. The
single lobe shown here is built up from the pulse sequence of Figures 32¢ and 33b.
The dimensions of the aperture of the array are found from the desired beam width
as shown in Figure 35a. This determines the locations of the independent points
the minimum number of antennas in the array which will prevent the occurrence

of undesirable side lobes due to the discreteness of the array., Since the pattern
repeats in the u and v directions at distances corresponding to a number of inde-
pendent points equal to the number of rows in the x and y directions, the number

of antennas is equal to the number of independent points within the dotted rectangle

shown in Figure 35c¢.
A Numerical Example:

As a numerical example suppose it were necessary to find the plane area and
approximate minimum number of antennas per unit area required to produce an
array having a beam with a single major lobe and very small minor lobes, and
subject to the following conditions.

(1) The half-amplitude azimuthal beamwidth shall be about +18° at zero eleva-

(2) The main beam shall be at the same azimuth for all elevations.

(3) The half-amplitude vertical beamwidth shall be adequate for elevations
up to at least 60°.

(4) The {lluminations shall be as simple as possible.

(5) The array must consist of vertical antennas above a plane earth.



{a)

mI-10



v

— — m— — ———

_— e

g beemy  bmny ey ey Sy oaw

]

An illumination of the type specified for Figure 33b will be used in both x and
y directions.

For this type of pattern the half -amplitude points of the space factor occur at a

< & L ot thaca Beints Armrasrand teg o AO
= 1.6 Let these points correspond toA = 0°,

Wi

separation Au' = 1.64

Né. IE]]

o

andh = 0®andh = 78.5° (see Figure 36). Then Au' = 0.8 = cos 0° - cos

78.5° = =;§1' or the aperture = 2X = 47,
The nominal beam center of the space factor is half way between these points,

oratu' = 0.2 + % = 0.6.

For a half beamwidth of about 18° let oy = 1.6
aperture = 2Y = 51/37.

2(0.3) = 0.6 or the

L]

The independent points in the u direction appear at u' = 0.6 +

% which is 0.5. Therefore the independent points occur atu' = 1,35, .85,

.35, -.15, -.65, -1.15, -1,65, etc. These are shown in Figure 36, The value
u' = , 85 determines ho = 32°,

I‘“

The first independent points in the v direction occur at /,/ = i

Since the spacing between independent points along the v axis is

. 188.

> o

vgn? = -375

din

the independent points oceur at /v/ = ,188, .563, .938, 1.313 etc. These
are shown in Figure 36.

In order to have enough antennas to eliminate side lobes but not more than this
number, let the first zero of the repeated (discreteness) pattern along the u'
axis occur atu' = -1.15. This is outside the radiation circle, The corre-
sponding zero of the main pattern occurs at u'
needed in the x direction.

1.85. Therefore 5 rows are

oI-11
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An illumination of the type specified for Figure 33b will be used in both x and
y directions.

Letu' = u + cos h@'
For this type of pattern the half -amplitude points of the space factor occur at a
separation Au' = 1.64 % ~ 1.6 % Let these points correspond toa = 0°
andh = 0°andh = 78.5° (see Figure 36). Then Au' = 0.8 = cos 0° - cos
1.6n

o or the aperture = 2X = 47.

78.5°

The nominal beam center of the space factor is half way between these points,
oratu' = 0.2 + =~ = 0.6.

For a half beamwidth of about 18° let Ay = 1.6
aperture = 2Y = 51/37.

= 2(0.3) = 0.6 or the

=

The independent points in the u direction appear atw' = 0.8 + 3 + L

But 0.6 + § = 0.6 + 4”&: = 0.85. The spacing between independent points is

;'—[ which is 0.5. Therefore the independent points occur at u' = 1.35, .85,

.35, -.15, -.65, -1.15, -1.65, etc. These are shown in Figure 36. The value
' = .85 determinesh = 32°,

3
is " " 188.
Since the spacing between independent points along the v axis is Av = {, =,376
the independent points ocecur at /v/ = .188, .563, .938, 1.313 etc., These
are shown in Figure 36.

The first independent points in the v direction occur at/y/ =

In order to have enough antennas to eliminate side lobes but not more than this
number, let the first zero of the repeated (discreteness) pattern along the u'
axis occur at u' = -1.15. This is outside the radiation circle. The corre-
sponding zero of the main pattern occurs at u' = 1.85. Therefore 5 rows are
needed in the x direction.

m-11



9L 914

A\

i
t
i

Ny311vd
| \ WHLANIZY

022

)
i
y
|
]
-

|
|
m‘ﬂ
i
|

e
,f_.\\ =

_ ,60.

\,\ hd —_—
f,, Ow»mc w
1
B i
@ _
i
®
f
|
—O /
0=~ 1
0=$ I

- .’-_v ,,,,, -
— P

A
‘,
{

Q)

ur-12




The first zero in the v direction occurs at v = -, 563. Let the corréesponding

~ zero of the repeated (discreteness) patfem oceur at v = .938; then 4 rows are

needed in the y direction. The black dots in Figure 36 indicate the basic and
repeated patterns. Then 4 X § = 20 antennas are required. The locations of
the antennas are shown in Figure 37. The equation for the illumination is

cimeoshy, . _ixcoshs
‘5. ) € T A .8 JEE i Y 7. o
I(xy)€ = [cos FFE cos e Je
Figure 37 tabulates the relative amplitudes and phases of the illumination for
the twenty antennas, including the phase .adjustment which would make all of
the contributions of the individual antennas add in phase if the aperture were
uniformly illuminated.

Contours of the overall radiation pattern including the F_ factor for the dipole
of the type shown in Figure 31a are shown in Figure 36. Figure 36 also shows

Some of the physical characteristics of circular arrays will be briefly discussed
below, but a numerical example is beyond the scope of this report.

The synthesis of arrays of antennas of circular or other shapes requires a know-
in

ledge of how many antennas are needed in order to prevent the _api.:éa:ance of

spurious lobes due to discreteness effects. Physically the problem is simple,

since for example any plane array can be considered to be contained within some

convenient rectangle. In the circular case the rectangle becomes a square in
which the illumination is different from zero only within a circular region. The
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effect of discreteness is to make the pattern repeat at such intervals as are
indicated in Figure 35c. For example, computations on the circular array
with reflector show that when the frequency is increased by 50%, and hence
side lobes appear in the region of about ;8’0" as would be expected from Figure
35¢.

Thus, the (approximate) required density of antennas, that is, number of an=
tennas per unit area in order to control side lobe effects, may be readily de-
termined for any shape.

Sometimes an array may be considered most conveniently as the sum of two
arrays and the overall pattern is then the sum (with due regard to phase angles)
of the two patterns; in such a case the discreteness problem is solved for each
component array separately.

The same concepts are applicable to volume arrays and to spectra in three
dimensional transform space. Thus at this point several broad conclusions
may be stated regardless of the shape of the aperture:

(1) The coarseness or basic ripple or grain size in transform space is
determined by the effective size of the aperture in the coordinate direction
corresponding to the transform coordinate along which the grain size is mea-
sured. The words effective size are used because in general patterns which
have small amplitude near the edges have broader main lobes than apertures
of the same size which are uniformly illuminated.

(2) A direct exchange of beamwidth for side lobe level may be made by using
illuminations which are largest near the center and which fall to a small value
near the edges of the array.

m-15



(3) There is a direct relationship between the density of antennas in any
direction in array space and the distance between the repeated patterns in the
corresponding direction in transform space. This is a physical phenomenon
which is independent of the exact shape of the array.

The synthesis of circular arrays is complicated by the fact that the Bessel func-
tiona fromi which the patterns must be built up are not quite as easy to use as
sinusoidal functions. However, if the various characteristics of the gin x func-
tions which have been found useful are enumerated then these same chd¥acteristics
may be found in certain of the forms obtained for circular afrays.

These useful properties are:

(1) It is possible to build basic patterns by use of the independent point
method.

(2) L is simple with this particular form of eigenfunction to exchange beam-
width for side lobe level directly. There are known sets of pulse shapes which
can be easily designed to produce small side lobes.

(8) The eigenfunctions are simple and of a familiar form.

The terms which appear in the spectrum column of items 2 and 3 of Table III will
be briefly discussed below. It will be shown that Type III-2 possess the first
property and that Type III-3 possess the second property. In both cases the phy-
sical characteristics of the functions, regardless of the values of the indices

K and M, are simple enough so that a little study produces the desired familiarity.

Iv-16



The Radiation Function (Type II-2)
Consider the function

I (H 22 K)Jg (er)F PRIt 1(PR)
RKM‘(PR)€JK < (A ) = ‘“@‘mmk)z (;R)ZK

where

This results from expanding an arbitrary function of r in a Fourier-Bessel
Series.

In order to find out how the functien Rl” m ( ,a' R) behaves as the parameter H

H takes on several representative values over the range wh_i_c_;h it can have.
Each value of H corresponds to a specific ratio between the derivative of the
radial function and the radial function itself which is associated with the K'th
(exponential) harmonic of the aperture illumination.

Then

TABLE V

® - AkM RKmQA« (%KM)JK(PR)
PR T A= (PR)2 T

(1 PR Iy (PR)E K- L J (PR)
T (Aem) N Py L .

Ik (i) LB Jk (pr)
0 K\ *km.
Ao - (PR)?
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All the Bessel Functions of the first kind, J (o R) behave very much like sinu-
goidal functions which are attenuated in ampntude as V:'lff for 2R > K,
and are substantially zero for ©R & K approximately (vefer to Figure 16).

The numerator functions here behave much like Bessel Functions, and hence
have almost regularly spaced zeros spaced by very nearly %- . For large

values of 2 R the functions behave as

K Jy (PR) PR Jy £ (PR)

7\KM - (,oR)

For small values of o R the functions behave as

The number H determines the numerator function. The possible roots A KM
which are the eigenvalues of the eigenfunctions used in the Fourier expansion
of the spectrum are all roots of the function which appears in the numerator.
The characteristics of the function can be seen from Figure 38 in which Figure
38a shows the performance of the numerator function, Figure 38b shows the
performance of the denominator function and Figure 38c shows the composite
function for the case where H = @. The composite function has the same
zeros as the numerator function with the one exception, A KM The composite
function behaves very much like the numerator function until almost up to the

value corresponding to the root, A - One zero is then removed just like
with the _L}n;,{.‘, functions and for higher values of AR, Rm (2 R) is atten-

uated rapidly.
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One property of the Radiation functions RKM (k'R), which appears different

51:" function is the form of the denominator.

from the properties of the

The eigenfunctions for the rectangular case could however be made to have a

Consider the function B )
-~ = - 51 5 + Jrm+l (pR.
Swm (pR)=T(11+2).2 """ HLLlLLs

The function 8., (PR) is a new mathematical function* which will here be

called Sonine's function because it is derived from an equation known as Sonine's
integral (but in the form shown in Table HI). For the case where K-0 the func-
tions have been tabulated and these functions are known as the lambda functions.
Curves of the lambda functions taken from Jahnke and Emde are shown in Figure
39. It can be seen that the pattern built up of such a type of function would have

a single major lobe and small minor lobes and that size of the minor lobes can

be exchanged directly for width of the major lobes.

The general function SKM (FR) can be demonstrated by two types of sets of curves.

The first type is obtaired by letting K+M = a constant. In this type there are
only a finite number of curves to a set. In fact that number is K+M+2. This type
has the useful property that all the functions of each set have the same zeros.

times the functions which appear in Item 3, Table III,

the Sonine functions give the same pattern as a circular line array, and in fact the
illumination fox this case is infinite on the perimeter of the circular area, and

finite inside. With proper normalization and careful mathematical rigor it can be

shown that the circular line array is a limiting case of this sequence,
Note that ™ (M+2) = (M+1)/ and that 0/ =1
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The second type, of which the curvés from Jahnke and Emde are an example,
have K = a constant. (In that case K = 0.) This group has an infinite num-
ber of curves per set, all of which have different zeros, and hence is less

useful. Sketches of the six lowest order function sets of the first type are

shown in Figure 40. These are drawn here to the same scale as Figure 16

for comparison purposes, although larger curves are used for actual design.
It will be noted that each set begins with a Bessel function such as was shown
in Figure 16 and ends with a lambda function such as was shown in Figure 39.
There is a direct exchange between main lobe shape and side lobe amplitude.

The SKM(QF) functions have been used for the synthesis of radiation spectra.
Further investigation of these functions leads to other useful properties which,
under certain conditions, simplify the synthesis of ¢ircular arrays having de-
sired properties. However, such a detailed consideration i8 beyond the scope
of this report.

ARRAYS WITH VERTICAL DIRECTIVITY

Arrays can be designed which have vertical directivity but no azimuthal direc-
tivity. The criteria which must be satisfied in order to obtain this type of pat-
tern are as follows:

(1) The arrays shall be circular in shape and the amplitude of the illumina-
tion shall be a function only of the radius.
(2) The variation of illumination with angle shall be of the type which has

This integral shall be independent of radius but it is not necessary that the
illumination for all radii shall be in phase.

a phase slip of an integral number of cycles going once around the array.

— sttt
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(3) There may be any radial distribution of illumination.

Any one of the circular arrays shown in Tables I, IH, and IV may be used. The
index number K defines the number of cycles of phase slip around the ¢ircle.

THE PLANE AREA REQUIRED FOR A SPECIFIED DIRECTIVITY

The theory which has been developed makes it rather simple to obtain a precise
definition of the plane area required in order to synthesize a directive array of
a specified beamwidth. This can be done with the aid of a blank design chart of
the type shown in Figure 40. By sketching the desired beam shape on Figure 41
and recalling that the radius of a circle is unity at the design frequency the re-
quired aperture at the design frequency may be found directly. The relations
between beamwidth, aperture, and side lobe level shown in Figure 33 permit a
simple estimate which is independent of the exact shape of the array which may
eventually be designed for the area.
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PART IV
CONCLUSION

This report presents a physical and mathematical theory of radiation directivity
which permits the synthesis of antenna arrays to produce radiation patterns
which may have arbitrarily selected intensities for all directions of radiation.
The method is equally powerful as an analysis tool.

The physical limitations of an array are: the region in space which it occupies,
the manner in which energy is fed to or taken from it, and the number and type
of antennas in the array. Perimeter arrays are not sufficiently general to per-
mit the synthesis of all patterns. Area'arrays subject to symmetry restrictions
and also arrays of antennas distributed throughout a volume are capable of pro-
ducing all patterns (in the limit), for all azimuths and elevations.

The region in array space occupied by the antennas is the aperture, and the dis-
tribution of current or voltage over the aperture is the {llumination. The over-
all pattern of an array is the product of the pattern per element and the geometri-
cal space factor which results from the distribution of illumination within the
aperture.

tion. The transform of the illumination is representable by a function in the

The space factor for an array is the Fourier Transform of the aperture illumina-

transform plane for the case of a plane array, and as a function in a 3-dimension-
al transform space in general. Representation of array space by any system of

coordinates yields results in transform space in terms of a similar set of coordi-

nates. The basic equation which is used to determine the space factor of an array
is obtained by considering the sum of the contributions of all the elements of the



|

array in the limit as the number of elements becomes infinite, but with the
total illumination remaining finite. The integral equations which result are
expressible in a set of standard forms depending on the coordinate system and

eral Fourier series suitable for the particular shape of array, the space factor
may bé determined in terms of a standard set of functions called eigenfunctions
which specifically contain the dimensions of the aperture. The relationships

several shapes of arrays.

The speéctra obtained from rectangular plane arrays are illustrative of the syn-
thesis method. The desired aperture may be synthésized as the sum of a set

of eigenfunctions, in terms of which the coordinates which define the aperture
illumination are simply determined by the amplitude of the desired space factor
at certain points. The spacing between these independent points is inversely
proportional to the aperture of the array. The result of using discrete antennas
at regular intervals in transform space. The region in transform space taken
up by each of the basic patterns is inversely proportional to the density of the
discrete antennas within the aperture. The number of antennas required in an
array of arbitrary shape may be readily determined by considering the array to
be contained within some convenient rectangular box and thus determining the nec-
essary density of antennas in each coordinate direction to insure freedom from
spurious side lobes due to discreteness. Other methods are applicable for spe-
cial cases such as the circular line array.



array in the limit as the number of elements becomes infinite, but with the
total illumination remaining finite. The integral equations which result are
expressible in a set of standard forms depending on the coordinate system and
the number of dimensions. When the illumination is expanded in a type of gen-
eral Fourier series suitable for the particular shape of array, the space factor
may be determined in terms of a standard set of functions called eigenfunctions
which specifically contain the dimensions of the aperture. The relationships
between illuminations and spectrum are tabulated in Tables I, I and IV for
several shapes of arrays.

The spectra obtained from rectangular plane arrays are illustrative of the syn=
thesis method. The desired aperture may be synthesized as the sum of a set

of eigenfunctions, in terms of which the coordinates which define the aperture
illumination are simply determined by the amplitude of the desired space factor
at certain points. The spacing between these independent points is inversely
proportional to the aperture of the array. The result of using discrete antennas
instead of a continuous illumination of the aperture is to make the pattern repeat
at regular intervals in transform space. The region in transform space taken
up by each of the basic patterns is inversely proportional to the density of the
discrete antennas within the aperture. The number of antennas required in an
array of arbitrary shape may be readily determined by considering the array to
be contained within some convenient rectangular box and thus determining the nec-

essary density of antennas in each coordinate direction to insure freedom from

spurious side lobes due to discreteness. Other methods are applicable for spe-
cial cases such as the circular line array.



I is necessary in designing arrays to be familiar with standard sets of eigen-

function sequences which may be used to produce desired results. The math=

ematical forms obtained for circular arrays involve Bessel functions of the

first kind and the integrals of some Bessel Functions. However, synthesis of

circular arrays is simplified by a study of two s:‘p_iﬁial mathematical functions
8in x .

which have the same useful properties as do the ~— functions for rectangular

arrays.

With the synthesis method it is possible to determine the necessary illumination
for any chosen type of array, and actual synthesis problems must consider the
relationships between the shape of the array, the type of basic elements, the
orientation of the elements in the array and the effects of reflecting surfaces.
For example, dipole patterns may be simply represented in terms of the trans-
form plane for various orientations.

The methods herein presented may be put to advantageous use:

(1) The complete choice of pattern which is available with some types of arrays
such as plane area arrays permits the achievement of superior performance to
that of some other types of arrays while réducing the cost and complexity.

(2) It is possible to directly exchange aperture for beamwidth, or beamwidth

(3) Superdirective arrays may be designed in which the intensity in those
regions of transform space which do not correspond to radiation space may be
arbitrarily varied in order to obtain greater control over the pattern in the

region of transform space corresponding to radiation space.



(4) Arrays may be designed which have vertical diréctivity but no azimuthal
directivity.

(5) The plane area required for a specified directivity may be readily found
by use of the transform plane.




APPENDIX A
DERIVATIONS OF EQUATION

Table I, Case 1.

Let

;J(Mr;‘—(wwx) X
£ +u X

fe=eo K uX + KT

Table I, Case 2.

The following general expansion is used here:

(107 03 O], (omr+ 2.3 I Jetem) cosK -0

=J, (PR +-2k§ () I fﬁ)[c;osl(,e cos K6+ sinf B sin!



Then, since _ay . (8 5)
claN. v T7a)Vph cos(8-8) i,
S(pe)- ’e'ﬁf" 1(s)e’f de

it is convenient to expand I (#) into the following Fourier series:

I(B) I I“ COSB*LZ COSZB‘.‘ i.*I"K cos K£+ . e
* IaSlﬂﬂ +IZZS|n Zﬂ-& LR IZKS”\ Kﬂ" . e

This simplifies the integration, since upon multiplying the above two series
expansions and integrating over an entire period all of the terms will vanish
except those involving terms of the form sin’ Kgor cos® K. This leads to
the conclusion that,

e S b ep e irn 60 . L g, (oo Y10

and hence
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For any aperture illumination representable in the form of the Fourier Series,
the terms may be integrated separately and the results added.

Table I, Case 3

This is obtained directly from II, 1 by considering the result of 4 linear arrays
which are the sides of the rectangle.

Table I, Cagel

i{irect extension of II, 1 obtained by integrating for each variable in

Table II1, Case 3

K:-00

I(rs) = i [ (€™

and let

where the )}_&M hre the roots of the equation

Mor™ D Oon) * Hy ) 0

where




‘

" Fourier-Bessel series which is called a Dini Series. Further consideration of
this term is beyond the scope of this report. *

™ S(p.0)= ex F I(r,p1€ 9°T €22(#°0) 4 rdg
Loy

?Kg_ °‘§&(J)K€JKG.[JK(90‘)[R]IKM J(Akm JR: )] rdr

or since @ is constant in the integration,

Ste,0)= Z prl €“<ej %Jx@r)k Lewde k) d(Pr)]

R 4 ,
Ve [ 25 5 (o) 3 (38 pr)d (pr
This is a standard form:** (PR

V= 26 (PR "’")d;;r [J-k (PF)]"A‘“KM JK (/" )a{o.— [T -Kﬁ ]

R — ,\ms“z nl

0
*Bessel Functions, G.N. Watson, Second Edition, MacMillan 1945 chgpter Xvm.
#*Bessel Functions, Gray Mathewa and’MaoRoberts, Chapter VIp. 69 eq, 2%, 34.
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This is zero when p#= 0, and hence, dropping the subscripts on *kM
for simplicity, 4 o A \2 o 7
v JOGr S ()= () IR &S (N
\2x =

but

Agr e (B) = =H J (A)
and hence T

V = J (A) Joer) + pr)® Jy pR)

(ﬁl'i )2_§ |

PR Jg" (pr) = p& Uy (p2) =K Jy (p®)

the following forms for 8 (p, ®) are obtained by substitution;
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Whenf R = x it 18 well known that*
Lo i o0 dipn
r«;""",); [(JK(en)z*(l (7" ?) JK (fk)]

Let s(f,,e‘) Kfﬂ SK(K(:,é)

- 2 ¢ :\K £ iKe R,
I is ugeful to consider
Tt s T, Ta (P O-051)"

Then let - .
r=Rsmm dr =R cosndn -

and hence .
. Jke & K+ amu
..K(p,e)-na( LY e Z ‘\f T J‘(,asm TO(Sm’)-LXcos‘h)dh]

Mzo?

*Bessel Functions, Gray Mathews and Mac Roberts, Chapter VI p. 69 eq. 23, 24.
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The term in the brackets is a standard form known as Sonine's First Finite
Integral*, and hence

Sy (pa)s £ 261€ " E 1o 27 M wp Jees o)

where
M2+ 2:3 + (M=1)M* [‘(M-H)
Although this formula is for area arrays and may be used when M = 0, 1, 2

etc., M = -1 gives the proper form of equations for the circular line array
(except for a constant multiplier).

Substitution of M = -1 into the equations gives

i)

q ‘)é S e S
1(r l g(%) which is finite

except when=5= R = 1. This suggests a modified normalization procedure so that
I(r) would define a circular ring for this case.

It may be noted that for this case (-1). = = o@ . Dividing both I(r) and Sgn) by -1t
indicates that the circular line array, defined by M = -1, may be considered a
liiniting case of this type of illumination. But this has already been derived.

Lll




then

This i8 a standard form*: (and hence)
. - . AVOT /P
Sep 025 Ix (1)%”*°[ %)

This is useful for cases in which negative powers of ({;) require that the
{llumination be defined as different from zero only in rings which enclose the
origin.

Ro

tiH Jral

o

(e ]

R

This is an extension of OI, 1 and IL, 3.

Table I, Case § .

#Tahles of Integral and Other Mathematical Data, H.B. Dwight, Revised Edition,
Macmillan, 1947. #835.1



Table IV, Case 1

This 18 a direct extension of I, 1 and 1.

N
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APPENDIX B

DERIVATIONS OF FORMULAS FOR ARRAYS OF
DISCRETE ANTENNAS

(1) Linear arrags.

The pulse function P (%) is shown below: N is the number of antennas

T T O T A

x=0

L1l I Ll Ll

N even

When N is odd

When N is even

Since - .)(Nﬂ)/:?' {f“s’ " N even
(= = |

then, whether N is even or odd

P(x) = 2 1)

P
The function | o (%) is given by
Jkr X

L(0-% 1%

Kz =eP
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and since T (x)=],(x) P(x’)
L5 5 (™21, ¢ wPTx

Ki-p Fe-o

and hence

component for the case of a discrete array is

SclwsIg 5"

Pe=ob B ~“-x-a-‘l(‘lr-PN""'

The effect of discreteness 15 to make the pattern repeat at intervals of N inde-
pendent points. The effect of discreténess depends on the number of antennas

only in degree9 hence, because the side lobes of the s_ix‘xﬁ@ function measured

4

term occurs in the equation to malge the phase of the term added by dzisc_retee
ness independent, at any point, of the number of antennas; ' for example see
Figure 14.

The formulas may also be written in closed form. For example, the well known

result for a uniformly illuminated linear array of discrete antennas would be
written, in the symbols used here as*

. Sinwl
Sin u.x

*See "Electromagnetic Waves", Schelkunoff, Van Nostrand, p. 342, 363.



e s ot

This could be used as an eigenfunction but it has the disadvantage that it is a
function of N. It i more convenient to use the "universal" s‘ﬁ)‘éx functions
for synthesis, although the above may be used as a computing aid.

The P“lse function is
P(x, )25, 2. (-I) [( NactDp Ny +g] ¢ Jove p1 4hgg ™ &)
P==0d t—-oo

)-Z f’ I Méd(w% + M ¥)

K— =ad Mz==00

Io (Xy

Then
o eSSy (Nt g Tnxeth)F +(Nyg M
I(X,y)e;;;:%”;m(-/) ¥ %m- %

bk (Nx+) p+(Ny+1) Siv (uX+KTr 4N+ PT) SIN(UY+MN+NggT
o "E} §’IK”(.’) d uXFRTFNRAF) (oY MHNW/%

This is a two dimensional extension of the preceding case. See Figure 11.
(3) The Circular Line Array.

P ( ) for this case is found from the following diagram:




B

When A is zero;

in general; P
then pe-oo

I(ﬂ):{j fi e“"‘f"V*ﬁNA

In order to ferform the integhation, the following two formulae are required.

€ " cos (p- e)-J (pr)+2 Z.‘ M‘s Jp (pr) cos ¢ (g-0)

ooz } (D8 (on) [cos g cosgo+Singam

This is a trigonometric Fourier series in 2, with Bessel function coéfficients
which are constant for the integration.

€ J(ropu)Bepna - =€ e (cosCkrpn)psd Sin(k+pn) 8)



When the two series are mult)plied together and integrated, only the terms in
cOos (K?N )8 and sin (K+p N )B will give results different from zero.

Then
= o " Cave\a
. S(P;9>=-‘R_ & z €’ 'NA P K(J'onm(pk))éJ(I “)
K=oe

For the Kth harmonic

Slp,0)ch S DLy "'"Jp~+.‘(pn)€-"f~*“)*9

f 2o ad
The meaning of this last form is made clearer if the terms are written out for
three specific cases of the illumination. Lét A = O for simplicity. (Whena
is not zero the "correction” pattern due to discreteness is rotated by the angle
a )

Case 1

Let T (g)=R = Constant (Uniform illumination)

then ,
S(.0)+Jolpr)

L 2 In(pr) COS N

+2 (4% Loy (en) cos 2N6

*’2(0)3”....-.,

When the antennas are spaced 1/2 wave length apart around the circle, the

highest value of p& which normally might correspond to real radiation space

is pr = N. Reference to Figure 16 shows why the terms of JzN(FR) and higher

orders can be neglected.

o)
0
o



For example,
Jgq (18) = 0. 000000006335
This effect is not quite as drastic for the lower orders, for example

Jyq (10) = 0.00001151
and Jg0(10) = 0.000000000001551

Thus the series is rapidly convergent in the important region near the origin,
whereoR is small.

Case 2

Let I(g) = R cos K@

S(p,0) *—(.5')'5 JK (pr) cos KO
. +(g) N+ JN +k (pr) COS(N+K)O
*i)vk Jn-x (pR) CosS(N-K)O

& .

Let I(8) = R sin K@

S(pe) = ()"  Julpr) COS KO
+ ()" Juek (PR) SINCN+K) B
= (3K Jn-k (pR) SINEN-K)O

* o 000~

In all cases the first term is what would be obtained with a continuously illum-
inated aperture, and only the first pair of correction terms need usually be
collected,
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APPENDIX C

TABLE OF SYMBOLS

(1) COMPARATIVE TABLE

Twe groups of 8ymbols are shown below. One group tabulates the symbols which

represent dimensions and functions in array space. The other group is related

to transform space. Pairs of functions which appear
table are analogous, or have similar significance in the two spaces. The capital
letters, X, Y, Z, R represent fixed, usually maximum values of the variables.

Array Space

I/(x, ¥,3)

or

‘.Nl
»

Ny
o N e

Linear Dimension
Linear Dimension
Radius from Origin

Angle, counterclockwise from

Fourier
Transform
of

angle

elevation
angle

opposite each other in the

Transform Space

o vV g < e

The Slu, v, CU')

or

Directions from
center of radiation

o

sphere to point
on surface
defining in array
radiation space

c-1



(2) ALPHABETICAL TABLE

it(regmn)
I(x)

| 10 |
I(x, y)

I(x,y,z)

 (f)]
Kr,g)
Kr,p,2)
1.(8)

L)

)

RSN

Description

' Initial term of Dini Series

Radio frequency

Design-center radio frequency

Radiation pattern

The radiation pattern of a single antenna
Campbell-Foster form of Fourier Transform
Campbell-Foster form of Fourier Transform
Elevation angle

Elevation angle of nominal beam direction

A parameter defined on page

The illumination in a specified region

Aperture illumination for a linear array along
the x axis

Amplitude of I(x)

Aperture illumination of a rectangular
in the (x,y) plane

array
Aperture illumination for a rectangular volume
array with (x, y, z) coordinates '

Aperture illumination of a circular line array
Aperture illumination of a circular plane array
Aperture illumination of a cylindrical array
Fourier Bessel form of aperture illumination

Radial function of the Kth harmonic component
of aperture illumination

Fourier coefficient

Envelope of aperture illumination of a discrete
linear array

Cc-2
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(2) ALPHABETICAL TABLE (Cont'd)

Symbol Description

ié(i, ¥) Envelope of aperture illumination for a
rectangular array of discrete antennas

J O(PR) Bessel function of first kind of order zero
and argument o R

JiolPR) Bessel function of first kind of order ten

, and argument o R
JK(K’) Bessel function of first kind with argument

equal to the order

K An integer, an index number

L An integer, an index number

M An integer, an index number

N An integer

Nx Repetition rate of patterns, equal to the
number of rows along x axis

N, Repetition rate of patterns, equal to the

y number of rows along ¥

P An integer, an index number

p-plane The complex plane of contour integration

P(x) Aperture illumination impuise function for

discrete antennas along x axis

P(x,y) Aperture illumination impulse function for
discrete antennas in x, y plane

An integer, an index number
Radial coordinate in array space
Outer or constant radius of a circle
Outside radius of an annular ring |
Inside radius of an annular ring

PR mm e
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(2) ALPHABETICAL TABLE (Cont'd)

Symbol
Ry (PR)
S(u)
8(u,v)
8(p,9)
8(at ,h)

B (P 0)
B
Spep(® v)
sm(fﬁ)
t

t

u

u',

4

M

e <

Déscription

Radiation function

Space factor in terms of u

Space factor in terms of u, v

Space factor in terms of p, 0

Space factor in terms of 4 ; h

Kth harmonic component of space factor

Kth harmonic component of space factor

Kth harmonic component of space factor

Sonine function

time

reference time

coordinate in transform space defined on
page

coordinate in transform space defined on
page

coordinate in transform space defined on
page

coordinate in transform space defined on
page

coordinate in array space
Semi-aperture in the x direction
coordinate in array space

Semi-aperature in the y direction

C-4



Alp
g (region)
/4

Description

Coordinate in array space

Semi=-aperture in the Z direction

Azimuth angle

Ammuth angle of nominal beam direction
The gamma ﬁmction of argument (M+ 2)
Variable of integration

Angle in the transform plane

A parameter

Radial caordmaxe in the ti-ansform plane

tion of a linear array

A phase difference

A Bessel transform

Phase function defines in a region
Integral defined on page

27f
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